Proteostatic Control of Telomerase Function through TRiC-Mediated Folding of TCAB1
نویسندگان
چکیده
Telomere maintenance by telomerase is impaired in the stem cell disease dyskeratosis congenita and during human aging. Telomerase depends upon a complex pathway for enzyme assembly, localization in Cajal bodies, and association with telomeres. Here, we identify the chaperonin CCT/TRiC as a critical regulator of telomerase trafficking using a high-content genome-wide siRNA screen in human cells for factors required for Cajal body localization. We find that TRiC is required for folding the telomerase cofactor TCAB1, which controls trafficking of telomerase and small Cajal body RNAs (scaRNAs). Depletion of TRiC causes loss of TCAB1 protein, mislocalization of telomerase and scaRNAs to nucleoli, and failure of telomere elongation. DC patient-derived mutations in TCAB1 impair folding by TRiC, disrupting telomerase function and leading to severe disease. Our findings establish a critical role for TRiC-mediated protein folding in the telomerase pathway and link proteostasis, telomere maintenance, and human disease.
منابع مشابه
Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle.
Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of...
متن کاملTelomerase Cajal body protein 1 depletion inhibits telomerase trafficking to telomeres and induces G1 cell cycle arrest in A549 cells
Telomerase Cajal body protein 1 (TCAB1) is a telomerase holoenzyme, which is markedly enriched in Cajal bodies (CBs) and facilitates the recruitment of telomerase to CBs in the S phase of the cell cycle. This recruitment is dependent on TCAB1 binding to a telomerase RNA component. The majority of cancer cells are able to grow indefinitely due to telomerase and its mechanism of trafficking to te...
متن کاملDisruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita.
Dyskeratosis congenita (DC) is a genetic disorder of defective tissue maintenance and cancer predisposition caused by short telomeres and impaired stem cell function. Telomerase mutations are thought to precipitate DC by reducing either the catalytic activity or the overall levels of the telomerase complex. However, the underlying genetic mutations and the mechanisms of telomere shortening rema...
متن کاملMinimized human telomerase maintains telomeres and resolves endogenous roles of H/ACA proteins, TCAB1, and Cajal bodies
We dissected the importance of human telomerase biogenesis and trafficking pathways for telomere maintenance. Biological stability of human telomerase RNA (hTR) relies on H/ACA proteins, but other eukaryotes use other RNP assembly pathways. To investigate additional rationale for human telomerase assembly as H/ACA RNP, we developed a minimized cellular hTR. Remarkably, with only binding sites f...
متن کاملSomatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan
Human embryonic stem cells can replicate indefinitely while maintaining their undifferentiated state and, therefore, are immortal in culture. This capacity may demand avoidance of any imbalance in protein homeostasis (proteostasis) that would otherwise compromise stem cell identity. Here we show that human pluripotent stem cells exhibit enhanced assembly of the TRiC/CCT complex, a chaperonin th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 159 شماره
صفحات -
تاریخ انتشار 2014